合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
-
> 仲醇聚氧乙烯醚硫酸盐平衡和动态表面张力及应用性能研究(二)
> LB膜技术及LB膜成膜过程、应用领域
> 放心喝!张家界6处地下水水源地水质达标
> N-十四酰基天冬氨酸及其钠盐合成路线、制备、表面张力等性能测定(二)
> 基于表面张力等分析油酸钠体系下磁化处理对赤铁矿和石英浮选分离效果的影响
> LB膜技术在界面相互作用研究中的应用
> 低分子热塑性树脂体系CBT500/DBTL的界面张力与温度的关联性(二)
> 植物油中N-酰基氨基酸表面活性剂的界面活性和聚集行为——摘要、简介
> FYXF-3煤粉悬浮剂润湿吸附性能、伤害性能及在煤层气压裂改造现场的实施方案(三)
> 裂缝性水封气藏解封过程中润湿反转剂浓度、气水界面张力变化(一)
推荐新闻Info
-
> 反离子盐KBr浓度对酰胺基阳离子Gemini表面活性剂的表/界面活性的影响(三)
> 基于孔溶液表面张力和黏度测试揭示增稠剂对流变参数和气泡结构的影响机制(二)
> 基于孔溶液表面张力和黏度测试揭示增稠剂对流变参数和气泡结构的影响机制(一)
> 反离子盐KBr浓度对酰胺基阳离子Gemini表面活性剂的表/界面活性的影响(二)
> 反离子盐KBr浓度对酰胺基阳离子Gemini表面活性剂的表/界面活性的影响(一)
> 典型离子型与非离子型起泡剂的界面行为对泡沫性能的影响机制
> 新无氰白铜锡电镀液及电镀方法可降低表面张力,促进镀液对复杂工件的润湿
> 一种耐超高温酸液体系、制备方法及其应用
> 纳米渗吸驱油剂种类、降低界面张力和改变润湿性的能力等机理研究(四)
> 复合驱中聚合物与阴离子表面活性剂的协同作用研究
离子组成、pH值对纳米SiO2/SDS体系降低油水界面张力的影响(三)
来源:油田化学 浏览 352 次 发布时间:2025-08-28
模拟地层水配制的纳米SiO2/SDS体系的pH值在8.5左右,此时,纳米SiO2表面的羟基会和OH-发生如下反应:
该反应使SiOH逐渐解离,减弱了SiO2表面的羟基和水之间的氢键作用,导致SiO2颗粒表面脱水,颗粒间水化作用力减弱,易发生聚并。在纳米SiO2/SDS体系中添加盐酸后,随着H+含量的增加,该反应向左移动,增强了SiO2表面的羟基和水之间的氢键作用,水化作用力增强,阻止了纳米SiO2颗粒之间发生桥接聚并,从而提高了体系的稳定性。
在酸性介质中,纳米SiO2表面的羟基会和游离的质子化水发生如下反应:
SiO2表面的羟基会和H+发生反应,所以和Ca2+、Mg2+、Na+离子相比,H+更容易吸附在纳米颗粒表面。当体系中含有足够量的H+时,H+离子可以在纳米SiO2周围形成保护层,如图4所示。模拟地层水中极少量的二价Ca2+、Mg2+也会使纳米SiO2失去稳定性,H+保护层的存在降低了纳米SiO2双电层中二价离子的含量,从而减少了二价阳离子对纳米SiO2稳定性的破坏。
图4纳米SiO2周围的H+保护层
在酸性介质中,纳米SiO2颗粒间水化作用力的增强及周围H+保护层的形成,能够很好地解释模拟地层水配制的纳米SiO2/SDS体系中pH值的降低对体系稳定性的影响。
2.2纳米SiO2/SDS体系降低界面张力的能力
图5为NaCl盐水和模拟地层水配制的纳米SiO2/SDS体系与原油间的界面张力随SiO2质量分数的变化曲线。NaCl盐水中,随SiO2质量分数的增加,纳米SiO2/SDS体系降低界面张力的能力逐渐增强。单独的纳米SiO2没有降低油水界面张力的能力,但在SDS溶液中加入纳米SiO2后,由于纳米SiO2与SDS都带负电,二者间存在的静电排斥作用使更多的SDS分子扩散至油水界面,从而降低了界面张力,随着SiO2质量分数的增加,SiO2与SDS之间的排斥作用增强,SDS降低界面张力的能力也不断增强。模拟地层水中,随SiO2质量分数的增加,纳米SiO2/SDS体系降低界面张力的能力先增强后降低,在SiO2质量分数为0.5%时界面张力达到最低。当SiO2质量分数小于0.5%时,体系稳定性较好,随SiO2含量的增加,体系降低界面张力的能力增强,这与NaCl盐水中的趋势和原因一致;当SiO2质量分数大于0.5%时,体系的稳定性变差,部分纳米SiO2颗粒聚集失效,因此体系降低界面张力的能力减弱。
图5纳米SiO2对SDS降低油水界面张力的影响
随pH值的降低,模拟地层水中纳米SiO2/SDS体系的稳定性逐渐增强,而纳米SiO2/SDS体系降低油水界面张力的能力与其稳定性有关,因此pH值的降低也将对体系降低界面张力的能力产生影响。图6为纳米SiO2/SDS体系降低油水界面张力的能力随pH值的变化曲线,其中SiO2质量分数分别为0.2%和1.5%。
图6 pH值对纳米SiO2/SDS体系降低油水界面张力的影响
当SiO2质量分数为1.5%时,纳米SiO2/SDS体系静置不久纳米SiO2即聚集在一起,使得SiO2与SDS之间的排斥作用减小,随着pH值的降低,水化作用力及H+保护层的形成使得纳米SiO2聚集的几率大大降低,SiO2颗粒在体系中分散较均匀,因此SiO2与SDS之间的排斥作用增大,体系降低油水界面张力的能力增强。当SiO2质量分数为0.2%时,纳米SiO2/SDS体系具有较好的稳定性,pH值的下降对体系降低油水界面张力的能力基本无影响。
3结论
在NaCl盐水中,纳米SiO2/SDS体系的|ζ|基本大于30 mV,体系更易稳定;模拟地层水中二价阳离子的存在使得体系的|ζ|均小于30 mV,颗粒容易聚集沉淀。纳米SiO2含量越大,颗粒之间碰撞的机率增加,纳米SiO2/SDS体系的稳定性越差。随着纳米SiO2含量的增加,SDS降低油水界面张力的能力在NaCl盐水中逐渐增强,而在模拟地层水中先增后减,在SiO2质量分数为0.5%时界面张力达到最低。
在模拟地层水中加入盐酸后,随着pH值降低,|ζ|不断减小,稳定性却逐渐增强,当pH值为3.5时,体系静置15 d后仍能保持较好的稳定性,降低pH值可以有效解决地层水中体系稳定性问题。当SiO2质量分数小于0.5%时,pH的下降对体系降低界面张力基本没有影响;当SiO2质量分数大于0.5%时,pH的下降会使体系降低界面张力的能力增强。